

The Q.ANTUM solar module Q.PLUS L-G4.2 is the strongest module of its type on the market globally. Powered by 72 Q CELLS solar cells Q.PLUS L-G4.2 was specially designed for large solar power plants to reduce BOS costs. Only Q CELLS offers German engineering quality with our unique triple Yield Security.

Q.ANTUM TECHNOLOGY: LOW LEVELIZED COST OF ELECTRICITY

Higher yield per surface area and lower BOS costs thanks to higher power classes and an efficiency rate of up to 17.8%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti PID 1 , Anti LID Technology, Hot-Spot Protect and Traceable Quality Tra.Q TM .

EXTREME WEATHER RATING

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (2400 Pa).

A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty².

- APT test conditions according to IEC/TS 62804-1:2015, method B (-1500V, 168h)
- See data sheet on rear for further information.

THE IDEAL SOLUTION FOR:

EL	ECTRICAL CHARACTERISTIC	CS					
PO	WER CLASS	335	340	345	350		
MII	NIMUM PERFORMANCE AT STANDAR	D TEST CONDITIONS, STC1 (POWER	TOLERANCE +5W/-0W)				
	Power at MPP ¹	P_{MPP}	335	340	345	350	
_	Short Circuit Current ¹	I _{sc}	9.50	9.54	9.59	9.64	
Minimum	Open Circuit Voltage ¹	V _{oc}	46.10	46.34	46.58	46.82	
Min.	Current at MPP	I _{MPP}	8.97	9.03	9.10	9.16	
-	Voltage at MPP	V_{MPP}	37.36	37.65	37.93	38.20	
	Efficiency ¹	η	≥16.8	≥17.1	≥17.3	≥17.6	
MII	MINIMUM PERFORMANCE AT NORMAL MODULE OPERATING TEMPERATURE, NMOT ²						
	Power at MPP	P_{MPP}	249.7	253.4	257.1	260.9	
트	Short Circuit Current	I _{sc}	7.65	7.69	7.73	7.77	
Minimum	Open Circuit Voltage	V _{oc}	43.28	43.51	43.74	43.97	
	Current at MPP	I _{MPP}	7.04	7.10	7.15	7.21	
	Voltage at MPP ¹	V_{MPP}	35.46	35.71	35.95	36.19	

 $^{1}\text{Measurement tolerances } P_{\text{MPP}} \pm 3\%; I_{\text{SC}} V_{\text{OC}} \pm 5\% \text{ at STC: } 1000 \text{W/m}^{2}, 25 \pm 2^{\circ}\text{C}, \text{AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{MMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{MMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{MMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{MMOT, spectrum AM } 1.5 \text{G according to IEC } 60904 - 3 \cdot ^{2}800 \text{ W/m}^{2}, \text{MMOT, spectrum AM } 1.5 \text{G according to IEC } 60904$

Q CELLS PERFORMANCE WARRANTY

At least 97 % of nominal power during first year. Thereafter max. 0.6 % degradation per year.
At least 92% of nominal power up to

10 years. At least 83 % of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25°C, 1000W/m²).

TEMPERATURE COEFFICIENTS

Temperature Coefficient of I _{sc}	α	[%/K]	+0.04	Temperature Coefficient of \mathbf{V}_{oc}	β	[%/K]	-0.29
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.40	Normal Module Operating Temperature	NMOT	[°C]	43±3°C

PROPERTIES FOR SYSTE	M DESIGN
Maximum System Voltage	Vove

I NOT ENTIED FOR OTOTEM DEDIGN					
Maximum System Voltage	$\mathbf{V}_{\mathrm{sys}}$	[V]	1500	Safety Class	II
Maximum Reverse Current	I_R	[A]	20	Fire Rating	C / TYPE 1
Max. Design Load, Push / Pull		[Pa]	3600/1600	Permitted Module Temperature	-40°C up to +85°C
Max. Test Load. Push / Pull		[Pa]	5400/2400	On Continuous Duty	

PARTNER

QUALIFICATIONS AND CERTIFICATES

IEC 61215:2016; IEC 61730:2016, Application class A This data sheet complies with DIN EN 50380.

NOTE: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Hanwha Q CELLS GmbH

Sonnenaliee 17-21, 06766 Bitterfeld-Wolfen, Germany | TEL +49 (0)3494 66 99-23444 | FAX +49 (0)3494 66 99-23000 | EMAIL sales@q-cells.com | WEB www.q-cells.com

